- 首页
- 消防设施操作员
答案:
-
1.og(csc(x)-cot(x)t(f,0,44
-
2.\( \int {\csc x(\csc x - \cot x)dx} = \)( )
-
3.1.证明: arctan x arc cot x
-
4.求极限$$\lim_{x\to 0}(1+\sin x)^{\cot x}$$
-
5.F(x,t)=f(x 2t) f(3x-2t),Fx(0,0)=()(0,0)=()
-
6.已知F2[x]中多项式g(x)= x2, f(x)= x4+ x+1,下列哪个s(x),t(x),使得s(x)f(x)+t(x) g(x)=1( )。
-
7.函数f(x)在[a,b]上连续,则[∫xbf(t)dt]?= [ ]A、f(x)B、-f(x)C、f(b)-f(x)D、f(x) f(b)
-
8.x=f'(t★★(2)f"(t)≠0y =tf()- f (t)
-
9.设f(x)连续且f(x)≠0,并满足f(x)=∫0xf(t)dt 2∫01tf2(t)dt,求f( )
-
10.A)f(x)≤f(x)≤g(x)(B)f(x)≤f(x)≤g(x)C)f(x)≤g(x)≤f(x)(D)f(x)≤g(x)≤f(x)