- 首页
- 消防设施操作员
-
1.当R2=1,F=0;当R2=0,F=∞。
-
2.解析:∵f(0)=0,f(1)=f(0)=0,f(2)=f(-1)=0,f(3)=f(-2)=0,f(4)=f(-3)=0,f(5)=f(-4)=0,∴f(1) f(2) f(3) f(4) f(5)=
-
3.若A . f(3) f(4) > 0 B . f( - 3) - f( - 2) < 0 C . f( - 2) f( - 5) < 0 D . f(4) - f( - 1) > 0
-
4.若f(x)=x2 bx c,且f(1)=0,f(3)=0,则f(-1)=______.
-
5.若f‘(0)=0,则f(0)=0
-
6.对任意x,y有f(x+y)+f(x-y)=2f(x)f(y),且f(0)>0,则f(1)-f(-1)=______
-
7.设Σ为上半球面x2 y2 z2=R2(z≥0,R>0),f(x,y,z)在Σ上连续,且f(r, y,z)= R-r
-
8.对于函数f(n)=A、f(n 1)-f(n)=1B、f(n k)=f(n)(k∈N * )C、α f(n) =f(n 1) αf(n)(α≠0)D、α f(n 1) =α-(α 1)f(n)(α≠0)
-
9.若f(0)=1,证明:f(x)≥ef’(0)x (x∈R).
-
10.假设f''(x)<0,f(0)=0,p>0,q>0,那么