请在 下方输入 要搜索的题目:

用线性规划方法求下列矩阵对策,其中[tex=0.786x1.0]YC6_0L4cgZKizDUEJRCuYQ[/tex] 为[p][tex=5.714x3.5]hFGPqaTLJbz58rkObOardyczPOAIZNysyaq52d5cgtBdmKFrgU7bhA9TWyja25jwynAz7yuWXC6jYKy7KOXmSxtBD6f-qkD19dAZ1IS-3NLIAavvWcyU__iAoAmUNTSw[/tex][/p]

用线性规划方法求下列矩阵对策,其中[tex=0.786x1.0]YC6_0L4cgZKizDUEJRCuYQ[/tex] 为[p][tex=5.714x3.5]hFGPqaTLJbz58rkObOardyczPOAIZNysyaq52d5cgtBdmKFrgU7bhA9TWyja25jwynAz7yuWXC6jYKy7KOXmSxtBD6f-qkD19dAZ1IS-3NLIAavvWcyU__iAoAmUNTSw[/tex][/p]

发布时间:2025-10-21 22:07:26
推荐参考答案 ( 由 快搜搜题库 官方老师解答 )
联系客服
答案:由于第 1 列优超于第 3 列,故可划去第 3 列,得到新的赢得矩阵 GvfZOUplUTNExhYPcmc2Ekv8rMlQ3CPrLWFzXrcVXDpqcYqP-OkIf0GNl5knKZIFBK5Bcl6oYDn4zNL5_lheW7LmJn_CkDSBw1UgbBNEik8 求解问题可化成两个互为对偶的线性规划问题 bg2SOpQt-vDLX0ChGmhrrNyRynSMmoLK0xGDMEbKShkEAMHIrPiBIu6vTbUkOh_3 hE3O_ZiZgwlHrXh9mTuCgpXzzrYMeY0LovR2aY647gjSmtHRXpymDfVSoFSWYXICDgPL0p37dt1lVGon8tOrt3BDTk-70SL_SJ96NM5ioWdrn9fXfoSrMFfw5Q-rkN7zt2osvvAuVSGnB-Ox_HDukIKiLZViQ7YoX1iByVjlythzAMS-b21PNyzZ39H58rAV CoNN7lQJxG91ZxzNzeJKDnX_rwZzoHusbDkulKf1EEnQpy4Qt_wrOgYhcRB-fzcj hE3O_ZiZgwlHrXh9mTuCgpXzzrYMeY0LovR2aY647ghvEWZxGRBIvvs10xwYJObQO9CvTDfFeWYShdbK-c2O1BzNRJM5lOzcyVNYC1-5Zazz59px7J9iQS8pbLaBMaM1qpcYMcZDXjY_UosNgsCsdWR8jSslJFVdzd_IcaR8QnndGOFZnjPTPZtboew2wM0blCRIFBBjgLGhvRvDjJOlZA 将线性规划问题化为标准型并列出初始单纯形表逐步迭代,计算结果如表所示。 由单纯形表的计算结果可得 5NeIeecsKse4Y767OEl7j9HDmhDtHLzy5Rz9GxCZnB6okSdUAhHtgXQ2BSootQrRSpNHFK22Mlrv4JRAvDdns18K4wDp40LF2isvjBu_ueo4CJnNOLJHQsF14qflYbj5pLaic2hdf7guK-9bZG-7P3AQesp3aidsWC_5eNYVK_cbVsX5WKCV1ov2mHMdkfVX。于是 RAvoKH3UPHcBborUwas-w74EXVH-Stp1Hd-L1Nv-znlZZ_FgITQLsks1kz1ud3mThuO15O6W5-ldTk3epL9yIukcwNIYN0PtjRJP8-0IURvIHKwcEgoQE0IxwWbdP42EKEeXXVWJW1V8DaoWqg5bbJZQKVhm2_ZNIhT1XiIJxkG3efLVVfEhxsrwMUVWdzwflC5fgIbFI_vhQaVDPmqqD_rfjIB5xOVZQ6IhSJvmCAV3cIf1AzC7OpzjwqJj26d1cLBOJ87plc3clCC9hJ56BmBf3WPbfRZ45raJNjx05VY5NXtTIEWGX_FM0P1aMnhPn82n8_PTjtwYLGFIwLEy_VLVk--W_b8awQGdKYCBULU
专业技术学习
专业技术学习
搜搜题库系统